Cosmin I. Bercea
Cosmin I. Bercea
Home
Light
Dark
Automatic
Publications
Type
Date
2023
2022
2020
2019
2016
Bias in Unsupervised Anomaly Detection in Brain MRI
UAD faces significant challenges tied to biases from different sources, including scanners, sex, and race. Future UAD models should maintain sensitivity to pathological shifts while minimizing sensitivity to non-pathological factors.
Cosmin I. Bercea
,
Esther Puyol-Antón
,
Benedikt Wiestler
,
Daniel Rückert
,
Julia A Schnabel
,
Andrew P. King
PDF
Cite
Dataset
Project
Mask, Stitch, and Re-Sample: Enhancing Robustness and Generalizability in Anomaly Detection through Automatic Diffusion Models
Overcoming the noise paradox of diffusion models
Cosmin I. Bercea
,
Michael Neumayr
,
Daniel Rueckert
,
Julia Schnabel
PDF
Cite
Code
Dataset
Project
Poster
Generalizing Unsupervised Anomaly Detection: Towards Unbiased Pathology Screening
Moving beyond hyperintensity thresholding. This paper analyzes the challenges and outlines opportunities for advancing the field of unsupervised anomaly detection.
Cosmin I. Bercea
,
Benedikt Wiestler
,
Daniel Rückert
,
Julia A Schnabel
PDF
Cite
Code
Dataset
Project
Project
Poster
Video
Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly Detection
Generative networks to reverse anomalies in medical imaging.
Cosmin I. Bercea
,
Benedikt Wiestler
,
Daniel Rueckert
,
Julia Schnabel
PDF
Cite
Code
Project
Federated Disentangled Representation Learning for Unsupervised Brain Anomaly Detection
Implicit disentanglement of shape and appearance with federated learning for unsupervised brain pathology segmentation.
Cosmin I. Bercea
,
Benedikt Wiestler
,
Daniel Rückert
,
Shadi Albarqouni
PDF
Cite
Code
Project
Video
What do we learn? Debunking the Myth of Unsupervised Outlier Detection
Novel deformable auto-encoders for unsupervised outlier detection
Cosmin I. Bercea
,
Daniel Rueckert
,
Julia Schnabel
PDF
Cite
Code
Project
FedDis: Disentangled Federated Learning for Unsupervised Brain Pathology Segmentation
Implicit disentanglement of shape and appearance with federated learning for unsupervised brain pathology segmentation.
Cosmin I. Bercea
,
Benedikt Wiestler
,
Daniel Rückert
,
Shadi Albarqouni
PDF
Cite
Code
Project
Video
SHAMANN: Shared Memory Augmented Neural Networks
Multiple virtual actors cooperating through shared memory solve medical image segmentation.
Cosmin I. Bercea
,
Olivier Pauly
,
Andreas K. Maier
,
Florin C. Ghesu
PDF
Cite
Confidence-aware Levenberg-Marquardt optimization for joint motion estimation and super-resolution
Multi-scale robust super-resolution by jointly optimizing the motion estimation and image reconstruction.
Cosmin I. Bercea
,
Andreas K. Maier
,
Thomas Koehler
PDF
Cite
Cite
×