Confidence-aware Levenberg-Marquardt optimization for joint motion estimation and super-resolution

Image credit: Unsplash

Abstract

Motion estimation across low-resolution frames and the reconstruction of high-resolution images are two coupled subproblems of multi-frame super-resolution. This paper introduces a new joint optimization approach for motion estimation and image reconstruction to address this interdependence. Our method is formulated via non-linear least squares optimization and combines two principles of robust super-resolution. First, to enhance the robustness of the joint estimation, we propose a confidence-aware energy minimization framework augmented with sparse regularization. Second, we develop a tailor-made Levenberg-Marquardt iteration scheme to jointly estimate motion parameters and the high-resolution image along with the corresponding model confidence parameters. Our experiments on simulated and real images confirm that the proposed approach outperforms decoupled motion estimation and image reconstruction as well as related state-of-the-art joint estimation algorithms.

Publication
In International Conference on Image Processing (ICIP)
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Supplementary notes can be added here, including code, math, and images.

Cosmin I. Bercea
Cosmin I. Bercea
Doctoral Researcher

My research is focused on interpretable machine learning for anomaly detection.